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Abstract

Exposure measurements of concentrations that are non-detectable or near the detection limit (DL) are common in

environmental research. Proper statistical treatment of non-detects is critical to avoid bias and unnecessary loss of

information. In the present work, we present an overview of possible statistical strategies for handling non-detectable

values, including deletion, simple substitution, distributional methods, and distribution-based imputation. Simple sub-

stitution methods (e.g., substituting 0, DL/2, DL/
p
2, or DL for the non-detects) are the most commonly applied, even

though the EPA Guidance for Data Quality Assessment discouraged their use when the percentage of non-detects is

>15%. Distribution-based multiple imputation methods, also known as robust or ‘‘fill-in’’ procedures, may produce

dependable results even when 50–70% of the observations are non-detects and can be performed using commonly avail-

able statistical software. Any statistical analysis can be conducted on the imputed datasets. Results properly reflect the

presence of non-detectable values and produce valid statistical inference. We describe the use of distribution-based mul-

tiple imputation in a recent investigation conducted on subjects from the Seveso population exposed to 2,3,7,8-tetra-

chlorodibenzo-p-dioxin (TCDD), in which 55.6% of plasma TCDD measurements were non-detects. We suggest that

distribution-based multiple imputation be the preferred method to analyze environmental data when substantial pro-

portions of observations are non-detects.
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1. Introduction

Environmental research frequently relies on measure-

ments of chemical, physical or biological agents per-

formed to evaluate low-level contamination of air, soil,

water or food, and to quantify the exposure of wildlife

and human individuals. In spite of extensive efforts to

develop high-sensitivity assays, often a substantial pro-

portion of samples have such low concentrations to bor-

der on the detection limit (DL) defined by the sampling

and analytical methods. Uncertainty deriving from lev-

els that are non-detectable may impair the capability

of drawing conclusions functional to regulatory decision

making (Currie, 2000). Dioxins, which may pose a threat

to human health and the environment even at very low

concentrations, often challenge investigators with expo-

sure measurements including high proportions of non-

detects (Currie, 2000; Singh and Nocerino, 2002).

Also in recent environmental investigations, percent-

ages of non-detectable levels in environmental and bio-

logical samples have often been large, as presence of

more than 40% of non-detects for at least one of the

analytes investigated has been far from being a rare

occurrence (Acquavella et al., 2004; Barra et al., 2004;

Berkowitz et al., 2004; Caserini et al., 2004; Kato

et al., 2004; Liu and Mou, 2004; Quandt et al., 2004;

Roots et al., 2004; Silva et al., 2004; Sinkkonen et al.,

2004; Toro et al., 2004). However, in spite of intense

debate and extensive theoretical research activity on

the topic, environmental research has often tolerated

the loss of information and potential bias arising from

improper or inadequate treatment of non-detects and

rarely taken advantage of available statistical techniques

to limit these problems.

In the present work, we discuss possible strategies for

handling exposure data including non-detects. We rec-

ommend the use of a multiple imputation method based

on distribution-based estimation of non-detectable val-

ues. Performances of this method have been previously

assessed through data simulation studies (Helsel, 1990;

Huybrechts et al., 2002; Lubin et al., 2004). We show

its application in estimating mean levels of dioxin in sub-

jects sampled from the Seveso population exposed to

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). In this re-

cent study, 55.6% of the subjects had non-detectable

plasma TCDD levels.
2. Non-detects: what they are and how to handle them

Measurements including non-detects are ‘‘left-cen-

sored data’’. A left-censored data sampling distribution
is one for which the only information in some of the

samples is that the true measurement is less than a given

censoring value (Hornung and Reed, 1990). The censor-

ing value, i.e., the DL, may be constant for all the obser-

vations in the dataset (singly censored data) or may vary

between observations (multiply censored data). There

have been considerable differences of opinion about

how to define the detection limit and how to determine

it experimentally (Currie, 2000). For our purposes, we

will simply define DL as the minimum level of an analyte

in a given determination that can reliably be reported

as an accurate number (Adams, 1998). Although non-

detects do not provide a point measure of the analyte,

they are informative data indicating that the analyte

has concentration between 0 and DL.

There are a number of available techniques for treat-

ing non-detects (Table 1). We enumerate and discuss

those most commonly used, with particular reference

to their possible application in environmental research.

2.1. Deletion

The simplest approach is to discard all the observa-

tions with non-detectable levels. This procedure causes

loss of the information carried by non-detects and ex-

cludes from the dataset the samples with lowest concen-

trations. Consequently, the mean analyte levels, which

are based on the remaining above-DL observations,

are overestimated (Hornung and Reed, 1990).

2.2. Simple substitution

Simple substitution methods substitute a single value

chosen from the interval zero to DL (e.g., zero, DL/2,

DL/
p
2, or DL) for each of the non-detects. Summary

statistics are then calculated using these substitute num-

bers together with the values above DL. Although widely

used, it has been noted that these methods have no theo-

retical basis and perform poorly compared to other pro-

cedures (Helsel, 1990). The substitution of zero produces

means that are underestimates of the true means,

whereas substitution of the DL value causes mean esti-

mates to be biased upward. Hornung and Reed (1990)

found that, for any censoring proportion and degree of

variability in the simulated data they examined, the

DL/2 or DL/
p
2 substitutions tended to be less precise

than other more complex procedures, such as the distri-

butional methods described in the next section. Although

DL/2 and DL/
p
2 substitutions are sometimes indicated

as not requiring any assumption on the underlying distri-

bution of the data, it has been shown that they are

actually based on the implicit hypothesis that values



Table 1

Available methods for the treatment of measurements data in the presence of non-detectable values

Procedure Method Validity Uncertainty due to

non-detectable values
Mean Standard deviation

Deletion Non-detects discarded Overestimated Underestimated Unaccounted for

Simple substitution

Zero Non-detects

set to zero

Underestimated Overestimated Unaccounted fora

DL/2 Non-detects

set to half

the detection limit

Bias small if
• frequency of

non-detects is low

• highly skewed data

Unaccounted fora

DL/
p
2 Non-detects

set to the

detection limit

divided by
p
2

Bias small if
• frequency of non-detects is low

• not highly skewed data

Unaccounted fora

DL Non-detects

considered

equal to the

detection limit

Overestimated Underestimated Unaccounted fora

Distributional Mean and SD

estimated using

assumptions on

underlying data distribution

Bias small if
• actual data do not depart from the

assumed distribution

• <50–60% of non-detects

Unaccounted for

Distribution-based

imputation

Imputes a value

drawn from

assumed underlying

distribution

Unbiased even if
• data show mild/moderate departure

from the assumed distribution

• 60–70% of non-detects

Accounted for by

multiple imputation

Abbreviation: DL, detection limit.
a Substituted values are treated in the analysis as true measured concentrations.
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below-DL follow a uniform (DL/2) or triangular distri-

bution (DL/
p
2, approximating the left tail of a lognor-

mal distribution) (Hornung and Reed, 1990). The EPA

Guidance for Data Quality Assessment suggests that

simple substitution methods may be adequate only when

the percentage of non-detects is low (<15%), and should

be avoided for higher percentages (EPA, 2000).
2.3. Distributional methods

Distributional methods are based on the assumption

that data arise from a specified parametric distribution,

e.g., the lognormal. Parameters of the distribution (e.g.,

mean and standard deviation) are estimated for exam-

ple, by maximum-likelihood estimation (MLE), based

on observed concentrations and DL values (Huybrechts

et al., 2002). Distributional methods perform well only

when the true distribution of the observations corre-

sponds to the assumed distribution and the proportion

of non-detects is <50–60% (Table 1). Although, in the

past, distributional methods were ‘‘laborious, requiring

extensive calculations and the use of tables’’ (Hornung

and Reed, 1990), desktop computing has greatly de-
creased those difficulties and standard software is readily

available (Finkelstein and Verma, 2001).
2.4. Distribution-based imputation

2.4.1. Imputation for non-detectable values

Distribution-based imputation procedures, referred

to by some authors as ‘‘robust’’ or ‘‘fill-in’’ methods

(Helsel, 1990), fit a parametric distribution to the data

using the same statistical procedures employed by distri-

butional methods. Then the fitted distribution is used to

‘‘draw’’ a value for each of the non-detects so that a

complete dataset is created that can be used in the ana-

lysis. While distributional methods are unbiased only

when the true distribution of the observations corre-

sponds to the assumed distribution, imputation proce-

dures are robust to mild or moderate departures of the

data from the assumed distributional shape (Huybrechts

et al., 2002). In addition, imputation procedures may

generate accurate estimates of population parameters

even when the percentage of non-detects is as high

as 60–70% (Table 1) (Huybrechts et al., 2002; Lubin

et al., 2004).



A. Baccarelli et al. / Chemosphere 60 (2005) 898–906 901
2.4.2. Multiple imputations for statistical inference

When using simple substitution or distributional

methods, statistical estimates are usually treated as if

they were calculated on actual measured data and uncer-

tainty resulting from substitution or imputation is

mostly ignored (Table 1). By contrast, the multiple

imputation strategy replaces each non-detect with sev-

eral values that represent the uncertainty about which

value to impute (Rubin, 1976, 1987). Multiple datasets

are created by repeating the imputation for non-detects

and, from each of them, parameter estimates and covari-

ances are obtained using standard analysis. These esti-

mates are then combined and the total variance of the

final estimate is computed (Rubin, 1987). When the

underlying distribution of the data is known, this strat-

egy results in valid statistical inference that properly re-

flects the uncertainty due to imputed values.

2.5. Remarks

All methods reported in Table 1 may be used with

both singly or multiply censored data (Helsel and Cohn,

1988; Helsel, 1990). Handling of measurements includ-

ing non-detectable values in developing regression mod-

els to examine the relationship between the measurement

value and covariate factors is examined in detail by

Lubin et al. (2004). We just mention here that distribu-

tion-based imputation procedures also allow for the

use of regression methods on datasets completed by

the imputed data, e.g., to evaluate a dose–response rela-

tionship between the exposure and the outcome of inter-

est, or to adjust for possible confounders.
3. Application of distribution-based multiple imputation

and comparison with other methods in the Seveso

chloracne study

3.1. Study background

In 1976, the Seveso accident exposed a large residen-

tial population to TCDD, the most toxic dioxin conge-

ner. The exposure produced a large outbreak of

chloracne, mostly among children (Baccarelli et al., in

press). Chloracne is a skin intoxication similar in

appearance to acne vulgaris, but characterized by pale-

yellow keratin cysts and larger and prominent comedo-

nes. After the accident, the area was divided in four

zones of decreasing contamination: zone A, where

TCDD soil concentration was highest, with 723 inhabit-

ants; zone B with 4281 inhabitants; zone R, with 31643

inhabitants; and a non-contaminated area surrounding

the contaminated zones, which had 181576 inhabitants.

Between 1993 and 1998, we contacted 101 chloracne

cases (56 males, 45 females; median age at the accident

8 years, range: 6 months–46 years) with confirmed diag-
noses and 211 controls (108 males, 103 females; median

age at the accident 14 years, range: 3 months–58 years)

selected from the Seveso population (Baccarelli et al.,

in press). TCDD levels were measured at the Centers

for Disease Control and Prevention (CDC) using a

high-resolution gas chromatography/high resolution

mass spectrometric analysis performed on human plas-

ma. All measurements were performed in the same test-

ing facility by using the same assay, technology, and

standardized procedures, as previously described (Pat-

terson et al., 1986, 1987). Briefly, criteria for a positive

TCDD determination were as follows: (1) signal/noise

greater than 3/1 for both signals on ions 320 and 322;

(2) signal/noise greater than 10/1 for both signals on ions

332 and 334 from the internal standard; (3) observed

retention times within ±1 scan of each other on ions

320 and 322 and the relative retention time (RRT) (to

[13C12]-2,3,7,8-TCDD) within 2 part-per-thousand of

the RRT of the analytical standard; (4) ratios of the

intensities of the ion 320–322 and 332–334 within the

95% confidence intervals established for these ratios

(Patterson et al., 1987). Details on criteria for reporting

results as quantified, non-quantifiable, or non-detect-

able, including how responses falling outside of the

theoretical ion-abundance ratio were handled, were pre-

viously described (Patterson et al., 1986). Nineteen of

the 312 subjects had samples inadequate for the assay

and were excluded from the analysis. On average, 5 ml

of plasma were used for the assay. The assay has vari-

able DL that depends, among other factors, on the

amount of lipids that can be extracted from the samples.

The amount of lipid available is related to the amount of

serum available for the assay. In addition, the recovery

of the analyte through the cleanup procedure from the

lipid can vary from sample to sample and this will also

affect the DL for that sample. Plasma TCDD levels were

non-detectable in 163 (55.6%) of the subjects. Subjects

with non-detectable levels had a median DL equal to

6.5 pg g�1 fat (range 1.4–26.8).

3.2. Distribution-based imputation of non-detects

TCDD plasma levels, similar to most environmental

pollutants (EPA, 2000; Huybrechts et al., 2002), are well

approximated by a lognormal distribution (Papke et al.,

1996; Landi and Baccarelli, 2003). First, we set an upper

bound at the DL reported for each sample. To obtain

maximum likelihood estimates of the mean and variance

of the lognormal distribution, we used the same likeli-

hood in formula (1) of the article by Huybrechts et al.

(2002). This likelihood function was based on the log-

transformed TCDD data from the control subjects,

and was the product of the normal density function

for values of the above-DL measurements, and the

cumulative normal distribution function at the log-

transformed bounds for the non-detects. We only used



Fig. 1. Measured data point and imputed values of plasma 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (pg g�1 fat or ppt, lipid

adjusted) among controls in one of the 10 imputations of non-detectable TCDD values in the Seveso chloracne study.
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control subjects to estimate the parameters of the log-

normal distribution, because they are more representa-

tive of the general population, while chloracne cases

were relatively rare in the Seveso population and are

likely to have higher dioxin levels (Baccarelli et al., in

press; Needham et al., 1997). We then imputed a value

from the lognormal distribution with the estimated

mean and variance parameters for each non-detect, by

drawing a random observation from this distribution

conditional on the observation being lower than DL.

Fig. 1 shows an example of a complete dataset including

actual above-DL measured values and imputed values

for subjects with non-detectable TCDD levels.

The above process produced a complete dataset with

the desirable quality that the estimates of population

parameters obtained from it are unbiased assuming the

correct distribution was chosen. To incorporate uncer-

tainty resulting from the imputation, we followed the

approach by Rubin (1976, 1987) and repeated the impu-

tation and estimation 10 times. For each of the 10 data-

sets completed by imputing for non-detectable values,

we estimated associations of TCDD plasma levels with

case status or other variables using linear regression

models. We assessed the association between chloracne

and TCDD plasma levels by fitting logistic regression

models. All analysis were adjusted for gender, and age

and residence at the time of the accident. The resulting

estimates were combined using PROC MIANALYZE

in SAS 8.2 (SAS Institute Inc., 2001). The combined

final estimate obtained from multiple imputations is

the average of the 10 complete-data estimates. The total
variance of the estimate is the sum of the within-imputa-

tion variance and the between-imputation variance. The

within-imputation variance is defined as the average of

the complete-data variances, and the between-imputa-

tion variance is the sample variance of the 10 complete

dataset estimates (Rubin, 1987). Unless proportions of

values that need to be imputed are extremely high, there

is little or no practical benefit from using more than 10

imputations (Schafer, 1999).

To obtain means by case status, gender, age groups,

or body mass index (BMI) categories, we combined the

coefficients obtained from linear regression models to

estimate stratum-specific TCDD levels, assuming that

the value of the other covariates in the models was con-

stant and equal to their means. As the plasma TCDD

distribution is lognormal, we calculated geometric,

rather than arithmetic, means.

3.3. Mean plasma TCDD in chloracne cases and

controls, by using distribution-based multiple imputation

We first used the distribution-based imputation pro-

cedure to estimate the mean levels of plasma TCDD in

cases and controls (Table 2). In the 10 datasets obtained

by multiple imputation for non-detects, geometric

means of plasma TCDD, adjusted for age, gender and

zone of residence, varied between 7.3 and 9.4 pg g�1

fat in chloracne cases and 4.1–5.1 pg g�1 fat in controls.

The variation across the 10 datasets reflects the uncer-

tainty due to the estimation of the non-detectable values.

In all of the datasets the difference between cases and



Table 2

Plasma TCDD levels estimated using distribution-based multiple imputation for non-detectable values in chloracne subjects and

controls from the Seveso population

Results Plasma TCDD (pg g�1 fat)a Relative risk of

chloracne

Chloracne cases (n = 98) Control subjects (n = 195) p-Value ORb,c (95% CI)c

Geometric meanc (Min–Max) Geometric meanc (Min–Max)

Finald 8.6 (0.3–475.0) 4.6 (0.3–127.0) 0.002 1.37 (1.17–1.59)

Imputation 1 9.2 (0.1–475.0) 4.5 (0.1–127.0) <0.001 1.38 (1.18–1.61)

Imputation 2 9.4 (0.4–475.0) 5.1 (0.3–127.0) <0.001 1.37 (1.17–1.59)

Imputation 3 7.8 (0.1–475.0) 4.5 (0.1–127.0) 0.003 1.36 (1.17–1.58)

Imputation 4 8.4 (0.1–475.0) 4.7 (0.1–127.0) 0.001 1.37 (1.17–1.59)

Imputation 5 8.6 (0.2–475.0) 5.0 (0.1–127.0) 0.001 1.35 (1.16–1.57)

Imputation 6 8.7 (0.2–475.0) 4.1 (0.1–127.0) <0.001 1.38 (1.18–1.61)

Imputation 7 8.1 (0.1–475.0) 4.9 (0.2–127.0) 0.004 1.36 (1.17–1.59)

Imputation 8 9.1 (0.4–475.0) 4.3 (0.2–127.0) <0.001 1.37 (1.17–1.60)

Imputation 9 7.3 (0.3–475.0) 4.4 (0.3–127.0) 0.007 1.35 (1.16–1.57)

Imputation 10 9.1 (0.1–475.0) 5.0 (0.2–127.0) <0.001 1.38 (1.18–1.62)

Abbreviations: TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; OR, Odds ratio; CI, confidence interval.
a Lipid-adjusted plasma TCDD levels measured approximately 20 years after the accident. Non-detects were found in 55.6%

of the subjects.
b Relative odds of chloracne for each 10 pg g�1 fat increase in plasma TCDD.
c Adjusted for gender, and age and zone of residence at the time of the accident.
d Obtained from the results of the 10 imputations according to Rubin (1987) using PROC MIANALYZE of SAS 8.2 (see

Section 2.4.1).
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controls was statistically significant (p 6 0.007). In the

final results, obtained by combination of the analyses

conducted on the 10 imputed datasets (Rubin, 1987),

we estimated mean plasma TCDD levels equal to

8.6 pg g�1 fat in cases and 4.6 pg g�1 fat in controls

(p = 0.002 for the difference between cases and controls).

Note that the final p-value is larger than most p-values

obtained from individual imputations, as it incorporates

the between-imputation variability, reflecting the uncer-

tainty related to the lack of point-measures for the non-

detects.

We also evaluated the dose–response relationship be-

tween chloracne occurrence and plasma TCDD levels

(Table 2). The final estimates showed that each increase

of 10 pg g�1 fat in plasma TCDD was associated with

a 37% elevation of the relative odds of chloracne

(OR = 1.37, 95% CI: 1.17–1.59). The ORs for chloracne

showed small variations across different imputations

(lowest OR, = 1.35, 95% CI 1.16–1.57; highest OR =

1.38, 1.18–1.62).

3.4. Comparison with other methods

We repeated the estimation of mean plasma TCDD

in chloracne cases and controls using the other pro-

cedures reported in Table 1 and calculated the percent-

age of departure (relative bias) from the estimates

obtained using the distribution-based multiple imputa-

tion method (reference) (Table 3).
Zero substitution and distributional methods could

not be used in our study. The zero substitution does

not allow to log-transform the data, a step necessary

to compute geometric means. The distributional meth-

ods do not allow for adjustment by age, gender and zone

of residence, as they do not accommodate regression

models for mean estimation (Lubin et al., 2004).

As expected, excluding the non-detects (deletion)

yielded geometric means that were much higher than

the reference (Table 3). The relative bias was 329.6%

in cases and 197.9% in controls. Means obtained using

the remaining simple substitution methods were also

higher than the reference. The relative bias varied be-

tween 22.8% and 82.7%, with relatively better results

when the DL/2 substitution was used. Using deletion

or substitution methods, the p-value for difference

between cases and controls was always statistically sig-

nificant (p < 0.001). The highly statistically significant

p-values reflect, at least in part, the underestimation of

total variance that occurs when these methods are used.

3.5. Determinants of TCDD plasma levels

We also used the distribution-based multiple imputa-

tion method to assess the association between TCDD

and possible determinants of dioxin levels, such as prox-

imity to the site of the accident, older age, female gender

and BMI (Landi et al., 1997) (Table 4). We found that

mean plasma TCDD increased from 2.9 pg g�1 fat in



Table 4

Plasma TCDD levels by zone of residence, age, gender and body mass index, estimated using multiple imputation for non-detectable

values

n Plasma TCDDa

Geometric mean Min–Max p-Valuea

Residence at the time of the accident

Non-contaminated area 77 2.9 (0.4–18.1) Reference

R zone 76 3.7 (0.3–23.5) 0.38

B zone 63 5.8 (0.3–51.5) <0.01

A zone 77 16.6 (0.3–475.0) <0.001

Age at the time of the accident

68 yearsb 105 3.9 (0.3–122.0) Reference

>8 yearsb 188 7.0 (0.3–475.0) <0.001

Plasma TCDD percentage increase for

each 10-year increment of age

+32.4% <0.001

Gender

Male 153 4.2 (0.3–104.0) Reference

Female 140 7.9 (0.3–475.0) <0.001

Body mass index (kg m�2)c

<21.6 97 4.4 (0.3–301.0) Reference

21.7–25 95 6.0 (0.3–447.0) 0.12

>25 99 7.0 (0.5–475.0) 0.04

Plasma TCDD percentage increase

for each 1-kg m�2 increment of BMI

+5.5% 0.01

Abbreviations: TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; BMI, body mass index.
a Geometric means (pg g�1 fat) and p-values computed using multiple linear regression models that included gender, and age and

zone of residence at the time of the accident.
b Median age of the chloracne cases.
c Body mass index measured at the interview.

Table 3

Comparison of different statistical procedures for treating non-detects in the chloracne case-control study

Procedure Plasma TCDD (pg g�1 fat)a

Chloracne cases (n = 98) Control subjects (n = 195)

Geometric meana

(pg g�1 fat)

Percent

difference (%)b
Geometric meana

(pg g�1 fat)

Percent

differenceb (%)

Distribution-based

multiple imputation

8.6 Reference 4.6 Reference

Deletion 36.9 329.6 13.8 197.9

Simple substitution

Zeroc NA – NA –

DL/2 10.6 23.9 5.7 22.8

DL/
p
2 12.8 49.2 6.9 49.8

DL 15.4 79.6 8.5 82.7

Distributionald NA – NA –

Abbreviations: DL, detection limit; TCDD, 2,3,7,8-tetrachlorodibenzo-p-dioxin; NA, not applicable.
a Adjusted for gender, age and zone of residence using multiple regression analysis.
b Percentage difference relative to the means calculated using the distribution-based multiple imputation procedure (reference).
c Log-transformation of values set to zero is impossible. Thus, geometric means could not be calculated.
d Distributional methods do not allow for calculation of geometric means adjusted through regression methods.
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subjects from the non-contaminated area, to 3.7 pg g�1

fat in zone R, the zone with the lowest contamination
(p = 0.38 vs. non-contaminated area); 5.8 pg g�1 fat in

zone B (p < 0.01 vs. non-contaminated area); and
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16.6 pg g�1 fat in zone A, the most contaminated zone

(p < 0.001 vs. non-contaminated area; p < 0.001 for

trend across zones). Individuals who were 8 years or

younger at the accident had mean plasma TCDD equal

to 3.9 pg g�1 fat (range 0.3–122.0), while TCDD plasma

levels were higher in older subjects (mean = 7.0 pg g�1

fat, range 0.3–475.0) (p < 0.001). Each 10-year age differ-

ence was associated with a 32.4% increase in plasma

TCDD (p < 0.001 for linear trend by age). Mean plasma

TCDD levels were 4.2 pg g�1 fat (range 0.3–104.0) in

males and 7.9 pg g�1 fat in females (range 0.3–475.0)

(p < 0.001). Subjects with lower BMI (<21.6 kg m�2)

had mean plasma TCDD equal to 4.4 pg g�1 fat (range

0.3–301.0), which tended to increase in individuals with

BMI between 21.7 and 25 kg m�2 (mean = 6.0 pg g�1

fat, range 0.3–447.0) and was highest in those above

25 kg m�2 (mean = 7.0 pg g�1 fat, 0.5–475.0). Each

1 kg m�2 increment of BMI contributed a 5.5% increase

to plasma TCDD (p = 0.01 for linear trend by BMI).
4. Conclusions

Correct handling of non-detectable values is critical

in environmental research, particularly when the range

of analytes in the study is close to DL, as often occurs

for persistent organic pollutants and dioxins. In our

application on chloracne, the multiple-imputation

means were considered as the best obtainable estimates

(Huybrechts et al., 2002) and set as reference in the com-

parison with the other procedures, whose relative bias

varied between 22.8% and 329.6%. Independently of

the procedures we used, we observed a statistically sig-

nificant difference between chloracne cases and controls

in plasma TCDD. This reflects the clear difference in

plasma TCDD between cases and controls at the higher

end of the TCDD distribution, where some subjects,

nearly all cases, had concentrations two orders of mag-

nitude greater than the average DL. However, p-values

for the case-control comparison obtained using deletion

and simple substitution methods were lower than the p-

value produced from multiple imputation, reflecting the

underestimation of total variance that occurs when the

simpler methods are used. Using multiple imputation

methods, investigators obtain valid inference with lower

probability of false positive results.

In dealing with lognormally distributed data, geo-

metric means are usually reported, because they assign

similar weight to all observations. Geometric means thus

tend to be sensitive to how non-detects are handled.

Arithmetic means, by contrast, are not strongly influ-

enced by low-exposure levels, but are primarily sensitive

to the larger values of exposure.

An additional advantage of imputation methods is

that, once distribution-based values are imputed for

the non-detectable values, any statistical method appro-
priate for complete data can be used. In the Seveso

chloracne example, we showed the use of multiple linear

regression to calculate adjusted geometric means and of

multiple logistic regression models to evaluate the dose–

response relationship of plasma TCDD with chloracne

and determinants of TCDD body burden. As pointed

out in our application, simpler methods may preclude

investigators from the use of standard statistical tech-

niques. Zero substitution and distributional methods,

for example, could not be used for estimation of ad-

justed TCDD means in the Seveso data.

We emphasize that, in planning a study and perform-

ing laboratory measurements, maximum effort should be

given to reduce the occurrence of non-detects. The sensi-

tivity of the assay and sample volume required should be

carefully evaluated in relation to the range of contamina-

tion investigated. When measurement data include non-

detects, distribution-based imputation strategies may

have definite advantages over other methods in handling

measurements of persistent organic pollutants and diox-

ins, as well as other environmental contaminants. The

computational effort required by the procedure has been

reduced by the availability of standard software and is

largely offset by the advantages that can be attained.
Acknowledgment

We are indebted to Jay Lubin, Ph.D. for the original

inspiration of the present work, advice, and critical read-

ing of the manuscript.
References

Acquavella, J.F., Alexander, B.H., Mandel, J.S., Gustin, C.,

Baker, B., Chapman, P., et al., 2004. Glyphosate biomoni-

toring for farmers and their families: results from the Farm

Family Exposure Study. Environ. Health Perspect. 112,

321–326.

Adams, N.H., 1998. Quality assurance reviews: how they differ

from peer reviews. Qual. Assur. 6, 75–85.

Baccarelli, A., Pesatori, A.C., Consonni, D., Mocarelli, P.,

Patterson, D., Caporaso, N.E., et al., in press. Health status

and plasma dioxin levels in chloracne cases twenty years

after the Seveso, Italy accident. Brit. J. Dermatol.

Barra, R., Cisternas, M., Suarez, C., Araneda, A., Pinones, O.,

Popp, P., 2004. PCBs and HCHs in a salt-marsh sediment

record from South-Central Chile: use of tsunami signatures

and 137Cs fallout as temporal markers. Chemosphere 55,

965–972.

Berkowitz, G.S., Wetmur, J.G., Birman-Deych, E., Obel, J.,

Lapinski, R.H., Godbold, J.H., et al., 2004. In utero

pesticide exposure, maternal paraoxonase activity, and

head circumference. Environ. Health Perspect. 112, 388–

391.

Caserini, S., Cernuschi, S., Giugliano, M., Grosso, M., Lonati,

G., Mattaini, P., 2004. Air and soil dioxin levels at three



906 A. Baccarelli et al. / Chemosphere 60 (2005) 898–906
sites in Italy in proximity to MSW incineration plants.

Chemosphere 54, 1279–1287.

Currie, L.A., 2000. Detection and quantification capabilities

and the evaluation of low-level data: some international

perspectives and continuing challenges. J. Radioanal. Nucl.

Chem. 245, 145–156.

EPA, U.S., 2000. Guidance for data quality assessment.

Practical methods for data analysis. Office of Environmental

Information, EPAQA/G-9, QA00VersionWashington, DC.

Finkelstein, M.M., Verma, D.K., 2001. Exposure estimation in

the presence of nondetectable values: another look. AIHAJ

62, 195–198.

Helsel, D.R., 1990. Less than obvious-statistical treatment of

data below the detection limit. Environ. Sci. Technol. 24,

1766–1774.

Helsel, D.R., Cohn, T.A., 1988. Estimation of descriptive

statistics for multiply censored water-quality data. Water

Resour. Res. 24, 1997–2004.

Hornung, R.W., Reed, L.D., 1990. Estimation of average

concentration in the presence of non-detectable values.

Appl. Occup. Environ. Hyg. 5, 48–51.

Huybrechts, T., Thas, O., Dewulf, J., Van Langenhov, H.,

2002. How to estimate moments and quantiles of environ-

mental data sets with non-detected observations? A case

study on volatile organic compounds in marine water

samples. J. Chromatogr. A 975, 123–133.

Kato, K., Silva, M.J., Reidy, J.A., Hurtz III, D., Malek, N.A.,

Needham, L.L., et al., 2004. Mono(2-ethyl-5-hydroxyhexyl)

phthalate and mono-(2-ethyl-5-oxohexyl) phthalate as bio-

markers for human exposure assessment to di-(2-ethylhexyl)

phthalate. Environ. Health Perspect. 112, 327–330.

Landi, M.T., Baccarelli, A., 2003. Correspondence re: Toide

et al., Aryl Hydrocarbon Hydroxylase represents CYP1B1,

and not CYP1A1, in human freshly isolated white

cells: trimodal distribution of Japanese population accord-

ing to induction of CYP1B1 mRNA by environmental

dioxins. Cancer Epidemiol. Biomarkers Prev. 12, 1116–

1117.

Landi, M.T., Needham, L.L., Lucier, G., Mocarelli, P.,

Bertazzi, P.A., Caporaso, N., 1997. Concentrations of

dioxin 20 years after Seveso. Lancet 349, 1811.

Liu, Y., Mou, S., 2004. Determination of bromate and

chlorinated haloacetic acids in bottled drinking water

with chromatographic methods. Chemosphere 55, 1253–

1258.

Lubin, J.H., Colt, J.S., Camann, D., Davis, S., Cerhan, J.R.,

Severson, R.K., et al., 2004. Epidemiologic evaluation of

measurement data in the presence of detection limits.

Environ. Health Perspect. 112, 1691–1696.

Needham, L.L., Gerthoux, P.M., Patterson Jr., D.G., Bramb-

illa, P., Turner, W.E., Beretta, C., et al., 1997. Serum dioxin
levels in Seveso, Italy, population in 1976. Teratog. Carci-

nog. Mutagen. 17, 225–240.

Papke, O., Ball, M., Lis, A., Wuthe, J., 1996. PCDD/PCDFs in

humans, follow-up of background data for Germany, 1994.

Chemosphere 32, 575–582.

Patterson, D.G., Holler, J.S., Lapeza Jr., C.R., Alexander,

L.R., Groce, D.F., O�Connor, R.C., et al., 1986. High-

resolution gas chromatographic/high-resolution mass spec-

trometric analysis of human adipose tissue for 2,3,7,

8-tetrachlorodibenzo-p-dioxin. Anal. Chem. 58, 705–713.

Patterson, D.G., Hampton, L., Lapeza Jr., C.R., Belser, W.T.,

Green, V., Alexander, L., et al., 1987. High-resolution gas

chromatographic/high-resolution mass spectrometric analy-

sis of human serum on a whole-weight and lipid basis for

2,3,7,8-tetrachlorodibenzo-p-dioxin. Anal. Chem. 59, 2000–

2005.

Quandt, S.A., Arcury, T.A., Rao, P., Snively, B.M., Camann,

D.E., Doran, A.M., et al., 2004. Agricultural and residen-

tial pesticides in wipe samples from farmworker family

residences in North Carolina and Virginia. Environ. Health

Perspect. 112, 382–387.

Roots, O., Henkelmann, B., Schramm, K.W., 2004. Concen-

trations of polychlorinated dibenzo-p-dioxins and polychlo-

rinated dibenzofurans in soil in the vicinity of a landfill.

Chemosphere 57, 337–342.

Rubin, D.B., 1976. Inference and missing data. Biometrika 63,

581–592.

Rubin, D.B., 1987. Multiple Imputation for Nonresponse in

Surveys. John Wiley, New York.

SAS Institute Inc., 2001. The MIANALYZE procedure. In:

SAS/STAT software: changes and enhancements. Release

8.2, SAS Institute Inc., Cary, NC, pp. 201–233.

Schafer, J.L., 1999. Multiple imputation: a primer. Stat.

Methods Med. Res. 8, 3–15.

Silva, M.J., Barr, D.B., Reidy, J.A., Malek, N.A., Hodge, C.C.,

Caudill, S.P., et al., 2004. Urinary levels of seven phthalate

metabolites in the U.S. population from the National

Health and Nutrition Examination Survey (NHANES)

1999–2000. Environ. Health Perspect. 112, 331–338.

Singh, A., Nocerino, J., 2002. Robust estimation of mean

and variance using environmental data sets with below

detection limit observations. Chemometr. Intell. Lab. Syst.

60, 69–86.

Sinkkonen, S., Rantalainen, A.L., Paasivirta, J., Lahtipera, M.,

2004. Polybrominated methoxy diphenyl ethers (MeO-

PBDEs) in fish and guillemot of Baltic, Atlantic and Arctic

environments. Chemosphere 56, 767–775.

Toro, B., Palma-Fleming, H., Navarro, J.M., 2004. Organic

pollutant burden of the giant mussels Choromytilus chorus

from the South-Central Chilean coast. Chemosphere 55,

267–275.


	Handling of dioxin measurement data in the presence of non-detectable values: Overview of available methods and their application in the Seveso chloracne study
	Introduction
	Non-detects: what they are and how to handle them
	Deletion
	Simple substitution
	Distributional methods
	Distribution-based imputation
	Imputation for non-detectable values
	Multiple imputations for statistical inference

	Remarks

	Application of distribution-based multiple imputation and comparison with other methods in the Seveso chloracne study
	Study background
	Distribution-based imputation of non-detects
	Mean plasma TCDD in chloracne cases and�controls, by using distribution-based multiple imputation
	Comparison with other methods
	Determinants of TCDD plasma levels

	Conclusions
	Acknowledgment
	References


